WHAT IS IN THE FAIR TOOLKIT?
- Why FAIR data matters for Life Science industry
- Use cases to exemplify the benefits of FAIR implementation by Life Science industry
- How-to methods for FAIR tools, training and change management
- Tips for Life Science industry and links to relevant resources
WHO IS THE FAIR TOOLKIT FOR?
- Data Stewards
- Laboratory Scientists
- Business Analysts
- Science Managers
Hear more about Roche’s ‘learning-by-doing’ FAIRification efforts
- Lessons learned from FAIRification of clinical data for Ophthalmology, Autism, Asthma and COPD
- Set up integrated end-to-end process for curation workflows for prospective studies
Roche embeds data standards and quality checks to harmonize, automate and integrate very heterogeneous and complex processes.
- Self-contained micro services deliver performance and scalability
- Scalable and flexible for data models in clinical and non-clinical
The Hyve present an approach to making new collaborative scientific research data FAIR in a real time manner on the internet.
- Rapid development of a semantic model expressed as subset of schema.org
- Reusable static web site generator code
Consider how the granularity and context of data and associated metadata to help to inform your FAIR objectives.
- Understand the granularity and context of the data as early as possible
Discover how to apply the FAIR Maturity Indicators to measure the REUSABILITY of the data and metadata.
- Reusability of data is compared with your FAIR objectives to identify and make improvements in an iterative manner
Find out how a generic workflow can be deployed by workshops or action team to make important datasets FAIR.
- FAIRification as a retroactive workflow is common at this time
- FAIRification by design (data “born” FAIR) is far more desirable for the future
CREATED BY LEADING LIFE SCIENCE ORGANISATIONS













