WHAT IS IN THE FAIR TOOLKIT?

  • Why FAIR data matters for Life Science industry
  • Use cases to exemplify the benefits of FAIR implementation by Life Science industry
  • How-to methods for FAIR tools, training and change management
  • Tips for Life Science industry and links to relevant resources

WHO IS THE FAIR TOOLKIT FOR?

  • Data Stewards
  • Laboratory Scientists
  • Business Analysts
  • Science Managers

The Hyve present an approach to making new collaborative scientific research data FAIR in a real time manner on the internet.

  • Rapid development of a semantic model expressed as subset of schema.org
  • Reusable static web site generator code
Find out more >

Hear more about Roche’s ‘learning-by-doing’ FAIRification efforts

  • Lessons learned from FAIRification of clinical data for Ophthalmology, Autism, Asthma and COPD
  • Set up integrated end-to-end process for curation workflows for prospective studies
Find out more >

How to unlock the value of RNA sequencing (RNA-Seq) and microarray data from a public repository Gene Expression Omnibus (GEO)

  • Using machine-learning assisted curation, guided by the FAIR principles
  • Leverage ontologies and controlled vocabularies for annotation
Find out more >

A Data Management Plan documents the specific attributes expected for your FAIR objectives.

  • Prepare the Data Management Plan as early as possible

 

Find out more >

Consider how the granularity and context of data and associated metadata to help to inform your FAIR objectives.

  • Understand the granularity and context of the data as early as possible
Find out more >

Find out how to apply the FAIR Maturity Indicators to measure the FINDABILITY of the data and metadata.

  • Findability of data is compared with your FAIR objectives to identify and make improvements in an iterative manner
Find out more >

CREATED BY LEADING LIFE SCIENCE ORGANISATIONS